Forward and Inverse Kinematic Analysis and Validation of the ABB IRB 140 Industrial Robot

Mohammed Almaged

Abstract - The main goal of this paper is to derive the forward and inverse kinematic model of the ABB IRB 140 industrial manipulator. Denavit-Hartenberg analysis (DH) is presented to write the forward kinematic equations. Initially, a coordinate system is attached to each of the six links of the manipulator. Then, the corresponding four link parameters are determined for each link to construct the six transformation matrices \(\begin{bmatrix} T_i \end{bmatrix} \) that define each frame \(i \) relative to the previous one \(i-1 \). While, to develop the kinematics that calculates the required joint angles \((\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6) \), both geometrical and analytical approaches are used to solve the inverse kinematic problem. After introducing the forward and inverse kinematic models, a MATLAB code is written to obtain the solutions of these models. Then, the forward kinematics is validated by examining a set of known positions of the robot arm, while the inverse kinematics is checked by comparing the results obtained in MATLAB with a simulation in Robot Studio.

Keywords - Robotics, forward kinematics, inverse kinematics, ABB IRB 140 manipulator

1. Introduction

'Kinematics is the science of geometry in motion' [1]. This means it deals only with geometrical issues of motion such as the position and orientation regardless the force that causes them. There are two types of kinematics, the forward and inverse kinematics. Forward kinematic analysis is concerned with the relationship between the joint angle of the robot manipulator and the position and orientation of the end-effector [2]. In other words, it deals with finding the homogeneous transformation matrix that describes the position and orientation of the tool frame with respect to the global reference frame. On the other hand, inverse kinematics is used to calculate the joint angles required to achieve the desired position and orientation. The same transformation matrix which resulted from the forward kinematics in order to describe the position and the orientation of the tool frame relative to the robot base frame is used here in the inverse kinematics to solve for the joint angles.

The IRB 140, shown in Figure 1 below, is compact six axes (6 DOF) industrial manipulator. It is designed with six revolute joints providing a flexible use at an outstanding accuracy to be suitable for a wide range of applications such as welding, packing, assembly, etc.

\(^1 \)Department of Mechatronics, Newcastle University, School of Mechanical & Systems Engineering
Newcastle Upon Tyne, UK, m_engineer89@yahoo.com
2. Forward Kinematics

To mathematically model a robot and hence determine the position and orientation of the end effector with respect to the base or any other point, it is necessary to assign a global coordinate frame to the base of the robot and a local reference frame at each joint. Then, the Denavit-Hartenberg analysis (DH) is presented to build the homogeneous transformations matrices between the robot joint axes [3]. These matrices are a function of four parameters resulted from a series of translations and rotations around different axes. The illustration of how frame \{i\} is related to the previous frame \{i - 1\} and the description of the frame parameters are shown in Figure 2 below.

\begin{itemize}
 \item α_{i-1}: Twist angle between the joint axes Z_i and Z_{i-1} measured about X_{i-1}.
 \item a_{i-1}: Distance between the two joint axes Z_i and Z_{i-1} measured along the common normal.
 \item θ_i: Joint angle between the joint axes X_i and X_{i-1} measured about Z_i.
 \item d_i: Link offset between the axes X_i and X_{i-1} measured along Z_i.
\end{itemize}

From Figure 2, the modified D-H parameters can be described as:

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{The description of frame \{i\} with respect to frame \{i - 1\} [3]}\label{fig2}
\end{figure}
Thus, the four Transformations between the two axes can be defined as:

$$\mathbf{T}_{i-1}^{-1} = \text{Rot}(X_{i-1}, \alpha_{i-1}) \times \text{Trans}(X_{i-1}, a_{i-1}) \times \text{Rot}(Z_i, \theta_i) \times \text{Trans}(0,0,d_i)$$

After finishing the multiplication of these four transformation, the homogeneous transform can be obtained as:

$$\mathbf{T}_{i-1}^{-1} = \begin{pmatrix}
 c_{\theta_i} & -s_{\theta_i} & 0 & a_{i-1} \\
 s_{\theta_i}c_{\alpha_{i-1}} & c_{\theta_i}c_{\alpha_{i-1}} & -s_{\alpha_{i-1}} & -d_is_{\alpha_{i-1}} \\
 s_{\theta_i}s_{\alpha_{i-1}} & c_{\theta_i}s_{\alpha_{i-1}} & c_{\alpha_{i-1}} & d_ic_{\alpha_{i-1}} \\
 0 & 0 & 0 & 1
\end{pmatrix} \quad (1.1)$$

The ABB IRB140 frames assignment is shown below in Figure 3.

![Figure 3. ABB IRB140 frames assignment](image)

According to our particular frame assignment, the modified D-H parameters are defined in Table 1 below.
The ABB IRB 140 D-H parameters

<table>
<thead>
<tr>
<th>Axis (i)</th>
<th>a_{i-1}</th>
<th>a_i</th>
<th>d_i</th>
<th>θ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$d_1 = 352$</td>
<td>01</td>
</tr>
<tr>
<td>2</td>
<td>-90</td>
<td>$a_1 = 70$</td>
<td>0</td>
<td>$02-90$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>$a_2 = 360$</td>
<td>0</td>
<td>03</td>
</tr>
<tr>
<td>4</td>
<td>-90</td>
<td>0</td>
<td>$d_4 = 380$</td>
<td>04</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>05</td>
</tr>
<tr>
<td>6</td>
<td>-90</td>
<td>0</td>
<td>0</td>
<td>06</td>
</tr>
</tbody>
</table>

For the simplicity of calculations and matrix product, it can be assumed that $s_2 = \sin(\theta_2-90)$, $c_2 = \cos(\theta_2-90)$. After achieving the D-H Table 1, the individual transformation matrix for each link is achieved by substituting the link parameters into the general homogeneous transform derived above in (1.1).
Once the homogeneous transformation matrix of each link is obtained, forward kinematic chain can be applied to achieve the position and orientation of the robot end-effector with respect to the global reference frame (robot base).

\[
\begin{align*}
 g_T^0 & = g_T^0 \times g_T^1 \\
 g_T^1 & = \begin{pmatrix}
 c_1 & -s_1 & 0 & 0 \\
 s_1 & c_1 & 0 & 0 \\
 0 & 0 & 1 & d_1 \\
 0 & 0 & 0 & 1
\end{pmatrix} \\
 g_T^2 & = \begin{pmatrix}
 c_2 & -s_2 & 0 & a_1 \\
 s_2 & c_2 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \\
 g_T^3 & = \begin{pmatrix}
 c_3 & -s_3 & 0 & a_2 \\
 s_3 & c_3 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \\
 g_T^4 & = \begin{pmatrix}
 c_4 & -s_4 & 0 & a_3 \\
 s_4 & c_4 & 0 & 0 \\
 0 & 0 & 1 & d_4 \\
 0 & 0 & 0 & 1
\end{pmatrix} \\
 g_T^5 & = \begin{pmatrix}
 c_5 & -s_5 & 0 & a_4 \\
 s_5 & c_5 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \\
 g_T^6 & = \begin{pmatrix}
 c_6 & -s_6 & 0 & a_5 \\
 s_6 & c_6 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \\
 g_T^7 & = \begin{pmatrix}
 c_7 & -s_7 & 0 & a_6 \\
 s_7 & c_7 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\]
Now, it is also possible to find the position of the tip (TCP) with respect to the robot base. According to the robot frame assignment, it is simply a transition along the z axis of frame \(\{6\} \) by \(d_6 \) (65 mm). Therefore, the final position of the end effector with respect to the robot global reference frame can be expressed as:

\[
P_{\text{tip}} = ^6T \cdot X \cdot P^6
\]

where:

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
\end{pmatrix} = \begin{pmatrix}
 r_{11} & r_{12} & r_{13} \\
 r_{21} & r_{22} & r_{23} \\
 r_{31} & r_{32} & r_{33} \\
\end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z \\
\end{pmatrix} + \begin{pmatrix}
 d_6 \cdot r_{13} + x \\
 d_6 \cdot r_{23} + y \\
 d_6 \cdot r_{33} + z \\
\end{pmatrix}
\]

3. Forward Kinematic Validation

After finding the homogeneous transformation matrix \(^6T \) that describes the end effector position and orientation with respect to the robot global reference frame, the position of the robot in space is expressed by the vector \(^0P_{\text{ORG}} \) which gives the values of \(x \), \(y \) and \(z \) vectors as follow:

\[
\begin{align*}
x &= -d_4 c_1 s_2 + c_1 (c_2 a_2 + a_1) \\
y &= -d_4 s_1 s_2 + s_1 (c_2 a_2 + a_1) \\
z &= -s_2 a_2 + d_1 - d_4 c_2 \\
\end{align*}
\]

that:

\[
\begin{align*}
 &S_2 = \sin(\theta_2-90), \\
 &C_2 = \cos(\theta_2-90), \\
 &d_1 = 352 \text{ mm}, \\
 &d_4 = 380 \text{ mm}, \\
 &a_1 = 70 \text{ mm} \text{ and } a_2 = 360 \text{ mm}.
\end{align*}
\]

These equations are programmed in Matlab and a set of eight positions, illustrated below in Figure 4, were chosen randomly to validate the forward kinematic model. The joint angles of each position are entered manually by the user to obtain the \(x \), \(y \) and \(z \) vectors as shown in Table 2 below. It can be clearly seen that there is no \(y \) component corresponding to these particular positions because \(\Theta_1 \) is always given to be zero. The same joint angle values were entered through the robot operating software in the lab and the results were similar to the \(x \), \(y \) and \(z \) vectors obtained from Matlab which proves the validity of this model.
4. Inverse Kinematics

Inverse kinematics is used to calculate the joint angles required to achieve the desired position and orientation in the robot workspace. In general, there are two methods of solution, the analytical and geometrical approaches. Since three consecutive axes of the robot intersect at a common point, Pieper's solution can be applied. Pieper's approach works on the principle of separating the position solution for θ_1, θ_2 and θ_3 from the orientation solution to solve for θ_4, θ_5 and θ_6 [4]. Therefore, a geometrical approach is initially implemented to find the joint variables θ_1, θ_2 and θ_3 that define the end effector position in space, while an analytical solution is applied to calculate the angles θ_4, θ_5 and θ_6 which describe the end-effector orientation.

4.1 Geometrical solution

According to the frame assignment shown in Figure 1, x and y components of frame \{1\} is the same as frame \{0\} because there is only a Z-directional offset between the two frames.

<table>
<thead>
<tr>
<th>Position</th>
<th>Joint angles</th>
<th>X vector</th>
<th>Y vector</th>
<th>Z vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 0$</td>
<td>450</td>
<td>0</td>
<td>712</td>
</tr>
<tr>
<td>1</td>
<td>$\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = -90$</td>
<td>70</td>
<td>0</td>
<td>1092</td>
</tr>
<tr>
<td>2</td>
<td>$\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 50$</td>
<td>314</td>
<td>0</td>
<td>420.9</td>
</tr>
<tr>
<td>3</td>
<td>$\theta_1 = 0$, $\theta_2 = 110$, $\theta_3 = -90$</td>
<td>765</td>
<td>0</td>
<td>98.9</td>
</tr>
<tr>
<td>6</td>
<td>$\theta_1 = 0$, $\theta_2 = -90$, $\theta_3 = 50$</td>
<td>1.1</td>
<td>0</td>
<td>596</td>
</tr>
<tr>
<td>7</td>
<td>$\theta_1 = 0$, $\theta_2 = 110$, $\theta_3 = -230$</td>
<td>218</td>
<td>0</td>
<td>558</td>
</tr>
<tr>
<td>8</td>
<td>$\theta_1 = 0$, $\theta_2 = -90$, $\theta_3 = -90$</td>
<td>-670</td>
<td>0</td>
<td>352</td>
</tr>
</tbody>
</table>

Figure 4. Set of different robot positions
Therefore, the projection of the wrist components on x-y plane of frame \{0\} has the same components on frame \{1\} [5, 6]. In addition, since both link two and three are planar, the position vector in y direction changes with respect to \theta_1 only. Thus, two possible solutions for \theta_1 can be achieved by simply applying the arctangent function.

\[
\theta_1 = \text{atan2} (P_y, P_x),
\]

\[
\theta_{11} = \pi + \theta_1.
\]

The solutions of \theta_2 and \theta_3 are obtained by considering the plane, shown in Figure 5, formed by the second and third planar links with respect to the robot global reference frame.

![Figure 5. Projection of links two and three onto the x y plane](image)

The cosine law is used to solve for \theta_3 as follow:

\[
h^2 = (L_2)^2 + (L_3)^2 - 2 \times L_2 \times L_3 \cos (180 - \zeta)
\]

Since the position is given with respect to the robot tip (TCP), L_3 should be equal to d_4 + d_6. While, L_2 = a_2, h^2 = s^2 + r^2, \cos (180 - \zeta) = - \cos (\zeta).

\[
s^2 + r^2 = (a_2)^2 + (d_4 + d_6)^2 + 2 \times a_2 \times (d_4 + d_6) \cos (\zeta)
\]

\[
\cos (\zeta) = \frac{[s^2 + r^2 - (a_2)^2 - (d_4 + d_6)^2)]}{2 \times a_2 \times (d_4 + d_6)}
\]

Now, we should have the value of (s) and (r) in term of \(P_{xtip}, P_{ytip}, P_{ztip}\) and \theta_1.

\[
S = (P_{ztip} - d_1)
\]

\[
r = \pm \sqrt{(P_{xtip} - a_1 \cos (\theta_1))^2 + (P_{ytip} - a_1 \sin (\theta_1))^2}
\]

Sub. (s) and (r) in (4.3) yield:

\[
\cos (\zeta) = \frac{[(P_{xtip} - d_1)^2 + (P_{ytip} - a_1 \cos (\theta_1))^2 + (P_{ztip} - a_1 \sin (\theta_1))^2 - (a_2)^2 - (d_4 + d_6)^2]}{2 \times a_2 \times (d_4 + d_6)}
\]

\[
\sin (\zeta) = \pm \sqrt{1 - \cos^2 (\zeta)}
\]

\[
\zeta = \text{atan2} (\sin (\zeta), \cos (\zeta))
\]

Finally, \theta_3 = -(90 + \zeta)

(4.4)
The negative sign in θ_3 indicates that the rotation occurred in the opposite direction. Likewise, we can follow the same procedure to solve for θ_2 using similar trigonometric relationships.

$$\theta_2 = \Omega - \lambda$$

$$\Omega = \text{atan}2(s, r)$$

$$\lambda = \text{atan}2((d_1+d_6) \sin(\zeta), a_2 + (d_1+d_6) \cos(\zeta))$$

$$\theta_2 = \text{atan}2(s, r) - \text{atan}2([(d_1+d_6) \sin(\zeta), a_2 + (d_1+d_6) \cos(\zeta)], \text{sub the values of (s) and (r) yield:})$$

$$\theta_2 = \text{atan}2[((P_{tip} - d_1) \pm \sqrt{(P_{tip} - a_1 \cos(\theta_1))^2 + (P_{tip} - a_1 \sin(\theta_1))^2})]$$

$$- \text{atan}2[(d_1+d_6) \sin(\zeta), a_2 + (d_1+d_6) \cos(\zeta)].$$

Again the rotation occurred in the opposite direction of the z axis as well as there are an initial rotation of 90° between axis 1 and axis 2. Therefore, the final value of θ_2 equal to:

$$\theta_2 = -((\Omega - \lambda) - 90). \quad (4.5)$$

It is important to say that any position within the robot workspace can be achieved with many orientations. Therefore, multiple solutions exist for the variables θ_1, θ_2 and θ_3 due to the nature of trigonometric functions.

As noticed above, every solution step resulted in two values that will be used in the next step, and so on. For example, there are four solutions for ζ that resulted from two different values of θ_1 (θ_1 and θ_11), this procedure gives four solutions for θ_3, each solution corresponds to different robot configurations of elbow-up and elbow-down representations. These solutions can be listed in Table 3 below to illustrate all the possible solution set.

Table 3. Possible solution set

<table>
<thead>
<tr>
<th>Solution</th>
<th>THETA1</th>
<th>THETA3</th>
<th>THETA2</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>θ_1</td>
<td>θ_3</td>
<td>θ_2</td>
<td>SET 1</td>
</tr>
<tr>
<td>2</td>
<td>θ_1</td>
<td>θ_3</td>
<td>θ_{22}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>θ_1</td>
<td>θ_{33}</td>
<td>θ_{2i}</td>
<td>SET 2</td>
</tr>
<tr>
<td>4</td>
<td>θ_1</td>
<td>θ_{33}</td>
<td>θ_{22i}</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>θ_{11}</td>
<td>θ_{3i}</td>
<td>θ_{2j}</td>
<td>SET 3</td>
</tr>
<tr>
<td>6</td>
<td>θ_{11}</td>
<td>θ_{3i}</td>
<td>θ_{22j}</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>θ_{11}</td>
<td>θ_{33i}</td>
<td>θ_{2k}</td>
<td>SET 4</td>
</tr>
<tr>
<td>8</td>
<td>θ_{11}</td>
<td>θ_{33i}</td>
<td>θ_{22k}</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Analytical solution

After solving the first inverse kinematic sub-problem which gives the required position of the end effector, the next step of the inverse kinematic solution will deal with the procedure of solving the orientation sub-problem to find the joint angles θ_4, θ_5 and θ_6. This can be done using Z-Y-X Euler’s formula. As the orientation of the tool frame with respect to the robot base frame is described in term of Z-Y-X Euler’s rotation, this means that each rotation will take place about an axis whose location depends on the previous rotation [3]. The Z-Y-X Euler’s rotation is shown below in Figure 6.
The final orientation matrix that results from these three consecutive rotations will be as follow:

\[
\begin{align*}
0^0_{\hat{O}} R &= R_z (\alpha) R_y (\beta) R_x (\gamma) \\
0^0_{\hat{O}} R &= \begin{pmatrix}
c_{\alpha} & -s_{\alpha} & 0 \\
s_{\alpha} & c_{\alpha} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
c_{\beta} & 0 & s_{\beta} \\
0 & 1 & 0 \\
-s_{\beta} & 0 & c_{\beta}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{\gamma} & -s_{\gamma} \\
0 & s_{\gamma} & c_{\gamma}
\end{pmatrix} \\
0^0_{\hat{O}} R &= \begin{pmatrix}
c_{\alpha} c_{\beta} & c_{\alpha} s_{\beta} & -s_{\alpha} c_{\gamma} \\
s_{\alpha} c_{\beta} & s_{\alpha} s_{\beta} + c_{\alpha} c_{\gamma} & s_{\alpha} s_{\gamma} - c_{\alpha} s_{\gamma}
\end{pmatrix}
\end{align*}
\]

Recall the forward kinematic equation,

\[
\begin{align*}
0^3_{\hat{O}} R &= \begin{pmatrix}
c_{1} c_{23} & -c_{1} s_{23} & -s_{1} \\
s_{1} c_{23} & s_{1} s_{23} & c_{1}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{\gamma} & -s_{\gamma} \\
0 & s_{\gamma} & c_{\gamma}
\end{pmatrix} \\
3^0_{\hat{O}} R &= \begin{pmatrix}
\hat{g}_{11} & \hat{g}_{12} & \hat{g}_{13} \\
\hat{g}_{21} & \hat{g}_{22} & \hat{g}_{23} \\
\hat{g}_{31} & \hat{g}_{32} & \hat{g}_{33}
\end{pmatrix}
\end{align*}
\]

However, it can be concluded that the last three intersected joints form a set of ZYZ Euler angles with respect to frame \{3\}. Therefore, these rotations can be expressed as:

\[
R_{x'y''} = 3^0_{\hat{O}} R = R_z (\alpha) R_y (\beta) R_x (\gamma)
\]

\[
\begin{align*}
3^0_{\hat{O}} R &= \begin{pmatrix}
c_{\alpha} & -s_{\alpha} & 0 \\
s_{\alpha} & c_{\alpha} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
c_{\beta} & 0 & s_{\beta} \\
0 & 1 & 0 \\
-s_{\beta} & 0 & c_{\beta}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{\gamma} & -s_{\gamma} \\
0 & s_{\gamma} & c_{\gamma}
\end{pmatrix} \\
3^0_{\hat{O}} R &= \begin{pmatrix}
c_{\alpha} c_{\beta} c_{\gamma} - s_{\alpha} s_{\beta} & s_{\alpha} c_{\beta} s_{\gamma} + s_{\alpha} c_{\gamma} & c_{\alpha} s_{\beta}
\end{pmatrix}
\]

Where \(3^0_{\hat{O}} R\) is given above as

\[
\begin{align*}
0^0_{\hat{O}} R &= R_z (\alpha) R_y (\beta) R_x (\gamma) \\
0^0_{\hat{O}} R &= \begin{pmatrix}
c_{\alpha} & -s_{\alpha} & 0 \\
s_{\alpha} & c_{\alpha} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
c_{\beta} & 0 & s_{\beta} \\
0 & 1 & 0 \\
-s_{\beta} & 0 & c_{\beta}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{\gamma} & -s_{\gamma} \\
0 & s_{\gamma} & c_{\gamma}
\end{pmatrix} \\
0^0_{\hat{O}} R &= \begin{pmatrix}
c_{\alpha} c_{\beta} & c_{\alpha} s_{\beta} & -s_{\alpha} c_{\gamma} \\
s_{\alpha} c_{\beta} & s_{\alpha} s_{\beta} + c_{\alpha} c_{\gamma} & s_{\alpha} s_{\gamma} - c_{\alpha} s_{\gamma}
\end{pmatrix}
\end{align*}
\]

The final orientation matrix that results from these three consecutive rotations will be as follow:
It is possible now to use the ZYZ Euler’s angles formula to obtain the solutions for θ_4, θ_5 and θ_6 where

$$\theta_5 = \beta = \arctan 2 \left(\frac{\sqrt{g_{23}^2 + g_{32}^2}}{g_{31}} \right)$$

$$\theta_4 = \alpha = \arctan 2 \left(\frac{g_{32}}{s_{\beta}}, -\frac{g_{31}}{s_{\beta}} \right)$$

$$\theta_6 = \gamma = \arctan 2 \left(\frac{g_{23}}{s_{\beta}}, \frac{g_{13}}{s_{\beta}} \right)$$

For each of the eight solutions achieved from the geometric approach for θ_1, θ_2 and θ_3, there is another flipped solution of θ_4, θ_5 and θ_6 that can be obtained as:

$$\theta_{55} = \beta' = \arctan 2 \left(-\frac{\sqrt{g_{23}^2 + g_{32}^2}}{g_{31}} \right), \text{ Or simply } \theta_{55} = - \theta_5$$

$$\theta_{44} = \alpha = \arctan 2 \left(\frac{g_{32}}{s_{\beta'}}, -\frac{g_{31}}{s_{\beta'}} \right), \text{ Or simply } \theta_{44} = 180 + \theta_5$$

$$\theta_{66} = \gamma = \arctan 2 \left(\frac{g_{23}}{s_{\beta'}}, \frac{g_{13}}{s_{\beta'}} \right), \text{ Or simply } \theta_{66} = 180 + \theta_6$$

Now, if $\beta = 0$ or 180, this means that the robot in a singular configuration where the joint axes 4 and 6 are parallel. This results in a similar motion of the last three intersection links of the robot manipulator.

Alternatively:
If $\beta = \theta_5 = 0$, the solution will be
$$\theta_4 = \alpha = 0$$
$$\theta_6 = \gamma = \arctan 2 (-g_{12}, g_{11})$$
If $\beta = \theta_5 = 180$, the solution will be
$$\theta_4 = \alpha = 0$$
$$\theta_6 = \gamma = \arctan 2 (g_{12}, -g_{11})$$

5. Inverse Kinematic Validation

The home position of the robot in space is chosen to check the validity of the inverse kinematic solution. This position can be represented by a point (P_{tip}) in the robot workspace. This point describes the position of the end effector (TCP) with respect to the robot base frame. By applying the inverse kinematic equations derived above, a set of joint angles is achieved. However, some of these angles do not yield a valid solution which is simply due to the fact that not all the joints can be rotated by 360°.

$$P_{tip} \text{ (Home Position)} = [pxtip \ pytip \ pztip]^\top = [515 \ 0 \ 712]^\top$$

After performing the calculations in MATLAB, four sets of solution were obtained as follow:

<table>
<thead>
<tr>
<th>θ_1</th>
<th>θ_3</th>
<th>θ_2</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-180</td>
<td>102</td>
<td>SET 1</td>
</tr>
<tr>
<td>0</td>
<td>-180</td>
<td>0</td>
<td>SET 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-102</td>
</tr>
<tr>
<td>180</td>
<td>-153</td>
<td>93.7</td>
<td>SET 3</td>
</tr>
<tr>
<td>180</td>
<td>-153</td>
<td>-23</td>
<td>SET 4</td>
</tr>
<tr>
<td>180</td>
<td>-27</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>-27</td>
<td>-93.7</td>
<td></td>
</tr>
</tbody>
</table>
However, because of the limitation on the joint angle range of movement [7], especially joints 2 and 3, some of these solutions (marked in red) are not valid. The ABB IRB 140 joint angle limits are listed below in Table 5.

Table 5. ABB IRB 140 joint angle limits [7]

<table>
<thead>
<tr>
<th>Joint Angle</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ1</td>
<td>180</td>
<td>-180</td>
</tr>
<tr>
<td>Θ2</td>
<td>110</td>
<td>-90</td>
</tr>
<tr>
<td>Θ3</td>
<td>50</td>
<td>-230</td>
</tr>
<tr>
<td>Θ4</td>
<td>200</td>
<td>-200</td>
</tr>
<tr>
<td>Θ5</td>
<td>115</td>
<td>-115</td>
</tr>
<tr>
<td>Θ6</td>
<td>400</td>
<td>-400</td>
</tr>
</tbody>
</table>

After checking all the possible solutions with joint angle limitation table, only three valid solutions [(0, 0, 0), (180, -23, -153), (0, 102, -180)] were achieved which represent different robot configurations of the home position, elbow-up and elbow-down representations. The elbow-up configuration that corresponds to joint angles (180, -23, -153) is shown in Figure 7 below, while Figure 8 shows the elbow-down configuration that corresponds to joint angles (0, 102, and 180). Finally, the set (0, 0, 0) represents the home position by default. It is important to note that the position vector in Robot Studio is given for the TCP with respect to the robot global reference frame. Thus to match our solution with the simulation in Robot Studio, the inverse kinematics was solved with respect to the robot TCP.

Figure 7. Elbow-up configuration

Figure 8. Elbow-down configuration
6. Conclusion

This work was undertaken to build the forward and inverse kinematic models of the ABB IRB 140 industrial manipulator. The Denavit-Hartenberg analysis (DH) is introduced to form the homogeneous transformation matrices. From the derived kinematic equations, it can be concluded that the position of the robot is given as a function of θ_1, θ_2 and θ_3 only, while the three last intersection joint angles (θ_4, θ_5 and θ_6) are used to give the desired orientation in space. The position vectors (x, y and z) obtained from the kinematic equations were matched with the actual robot position in the lab for the same joint angle input. Therefore, it can be declared that the kinematic derivation was carried out successfully. Two approaches have been presented to solve the inverse kinematic problem. Those were the geometrical and analytical approaches. Multiple solutions have been produced due to the nature of trigonometric functions. However, it has been shown that not all the solutions that resulted from the inverse kinematics were valid. This is basically due to the physical restrictions on the joint angle range of movement. A simulation of the manipulator in Robot Studio has been introduced to prove the validity of the inverse kinematic model. It is also used to validate the written Matlab code.

References

Appendices

I. Forward kinematics script

% THIS PROGRAM IS USED TO SOLVE THE FORWARD KINEMATIC OF THE ABB IRB140

% NON RETURN FUNCTION OF THE MAIN PROGRAM TO COMBINE ALL THE FUNCTIONS TOGETHER IN ONE SCRIPT

function [NONRETURNFN] = FORWARD()

% DECLARATION OF THE MDH PARAMETERS

a0 = 0; d1 = 352; alpha0 = 0;
a1 = 70; d2 = 0; alpha1 = -pi/2;
a2 = 360; d3 = 0; alpha2 = 0;
a3 = 0; d4 = 380; alpha3 = -pi/2;
a4 = 0; d5 = 0; alpha4 = pi/2;
a5 = 0; d6 = 0; alpha5 = -pi/2;

% USER INTERFACE

theta1 = input ('PLEASE ENTER THE VALUE OF THETA1 IN DEGREE = ');
theta2 = input ('PLEASE ENTER THE VALUE OF THETA2 IN DEGREE = ');
theta3 = input ('PLEASE ENTER THE VALUE OF THETA3 IN DEGREE = ');
theta4 = input ('PLEASE ENTER THE VALUE OF THETA4 IN DEGREE = ');
theta5 = input ('PLEASE ENTER THE VALUE OF THETA5 IN DEGREE = ');
theta6 = input ('PLEASE ENTER THE VALUE OF THETA6 IN DEGREE = ');

% CALL THE DH FUNCTION TO CALCULATE THE HOMOGENEOUS TRANSFORMATION MATRICES

T10 = DHFUNCTION(a0,alpha0,d1,theta1*pi/180)
T21 = DHFUNCTION(a1,alpha1,d2,(theta2-90)*pi/180)
T32 = DHFUNCTION(a2,alpha2,d3,theta3*pi/180)
T43 = DHFUNCTION(a3,alpha3,d4,theta4*pi/180)
T54 = DHFUNCTION(a4,alpha4,d5,theta5*pi/180)
T65 = DHFUNCTION(a5,alpha5,d6,theta6*pi/180)
T20 = T10*T21;
T30 = T20*T32;
T64 = T54*T65;
T63 = T43*T64;
T60 = T30*T63

% THE POSTION OF THE END EFFECTOR AT JOINT 6

Xw = T60(1,4);
Yw = T60(2,4);
Zw = T60(3,4);
P6 = [Xw;Yw;Zw]

% THE POSTION OF THE END EFFECTOR AT THE TCP

PTCP = T60*[0;0;65;1]

% Modified DH TRANSFORM FUNCTION

function T = DHFUNCTION(ai,alphai,di,thetai)

T = [cos(thetai), -1.*sin(thetai), 0, ai;
 sin(thetai).*cos(alphai), cos(thetai).*cos(alphai), -1.*sin(alphai), 1*di.*sin(alphai);
 sin(thetai).*sin(alphai), cos(thetai).*sin(alphai), cos(alphai), di.*cos(alphai);
 0, 0, 0, 1];
end

II. Inverse kinematics script

% THIS PROGRAM IS USED TO SOLVE THE INVERSE KINEMATIC OF THE ABB IRB 140

% DEFINE A NON RETURN FUNCTION TO COMBINE ALL THE INVERSE FUNCTIONS TOGETHER IN ONE SCRIPT

function [NONRETURNFUNCTION] = INVERSE()
% DECLARATION OF THE ROBOT PARAMETER
\[
d_1 = 352; \\
a_1 = 70; \\
a_2 = 360; \\
d_4 = 380; \\
NOSOLUTION = 1000;
\]

% THIS PROGRAM IS DESIGNED TO SOLVE THE INVERSE WITH RESPECT TO Porg6 OR TCP
ACCORDING TO USER SELECTION
\[
\text{sel} = \text{input} ('\text{TO SOLVE THE INVERSE WITH RESPECT TO FRAME6 PRESS 1 WHILE, TO SOLVE THE INVERSE WITH RESPECT TO TCP ENTER 2: ');}
\]
\[
\text{if} (\text{sel} == 1) \\
d_6 = 0; \\
\text{elseif} (\text{sel} == 2) \\
d_6 = 65; \\
\text{else} \\
d_6 = 65;
\end{align*}
\]

% USER INTERFACE
\[
\text{xtip} = \text{input} ('\text{PLEASE ENTER THE GOAL POSTION X = '});
\]
\[
\text{ytip} = \text{input} ('\text{PLEASE ENTER THE GOAL POSTION y = '});
\]
\[
\text{ztip} = \text{input} ('\text{PLEASE ENTER THE GOAL POSTION z = '});
\]
\[
\text{alpha} = \text{input} ('\text{PLEASE ENTER THE VALUE OF alpha IN DEGREE = '});
\]
\[
\text{beta} = \text{input} ('\text{PLEASE ENTER THE VALUE OF beta IN DEGREE = '});
\]
\[
\text{gama} = \text{input} ('\text{PLEASE ENTER THE VALUE OF gama IN DEGREE = '});
\]

% CALCULATING ALL THE POSSIBLE VALUES FOR THETA1
\[
\text{theta1} = \text{atan2 (ytip, xtip)};
\]
\[
\text{theta1} = \pi + \text{theta1};
\]
\[
\text{THETA1} = \text{theta1} * 180 / \pi;
\]
\[
\text{THETA11} = \text{theta11} * 180 / \pi;
\]

% CALCULATING ALL THE POSSIBLE VALUES FOR THETA3
\[
s = (\text{ztip} - d_1);
\]
\[
r = \sqrt{(\text{xtip} - a_1 \cos (\text{theta1}))^2 + (\text{ytip} - a_1 \sin (\text{theta1}))^2};
\]
\[
czeta = (r^2 + s^2 - (a_2)^2 - (d_4 + d_6)^2)/(2*a_2*(d_4 + d_6));
\]

% SINGULARITY CONDITION, CHECK IF THE POSTION WITHIN THE WORKSPACE OR NOT
\[
\text{if} (\text{abs(czeta)} <= 1) \\
\text{szeta} = \sqrt{1-(czeta)^2};
\]
\[
\text{szeta} = -szeta;
\]
\[
\text{zeta} = \text{atan2(szeta, czeta)};
\]
\[
\text{zeta} = \text{atan2(szeta1, czeta1)};
\]
\[
\text{theta3} = -(\pi/2 + \text{zeta});
\]
\[
\text{theta33} = -(\pi/2 + \text{zeta1});
\]
\[
\text{THETA3} = \text{conversion(theta3, 50, -230)};
\]
\[
\text{THETA33} = \text{conversion(theta33, 50, -230)};
\]
\[
\text{else} \\
\text{theta3} = \text{NOSOLUTION};
\theta_3 = \text{NOSOLUTION};
\theta_{33} = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_{33};
\text{End}

s = (z_{\text{tip}} - d_1);
r = \sqrt{(x_{\text{tip}} - a_1 \cos(\theta_{11}))^2 + (y_{\text{tip}} - a_1 \sin(\theta_{11}))^2};
czeta = \frac{(r^2 + s^2 - (a_2)^2 - (d_4 + d_6)^2)}{2 \cdot a_2 \cdot (d_4 + d_6)};

\% SINGULARITY CONDITION, CHECK IF THE POSITION WITHIN THE WORKSPACE OR NOT

if (abs(czeta) \leq 1)
 szeta = \sqrt{1 - (czeta)^2};
szeta_1 = -szeta;
zeta_1 = \text{atan2(szeta, czeta)};
zeta_1 = \text{atan2(szeta_1, czeta)};
\theta_{3i} = -(\pi/2 + zeta_1);
\theta_{33i} = -(\pi/2 + zeta_1);
THETA_{3i} = \text{conversion(} \theta_{3i}, 50, -230);
THETA_{33i} = \text{conversion(} \theta_{33i}, 50, -230);
\text{else}
 \theta_{3i} = \text{NOSOLUTION};
 \theta_{33i} = \text{NOSOLUTION};
 THETA_{3i} = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_{3i};
 THETA_{33i} = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_{33i};
\text{end}

\% CALCULATING ALL THE POSSIBLE VALUES FOR \theta_2

if (\theta_3 == \text{NOSOLUTION})
 THETA_2 = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_2;
 THETA_22 = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_22;
else
 \theta_2 = \text{THE2} (x_{\text{tip}}, y_{\text{tip}}, z_{\text{tip}}, \theta_1, \text{zeta});
 \theta_22 = \text{THE2COMP} (x_{\text{tip}}, y_{\text{tip}}, z_{\text{tip}}, \theta_1, \text{zeta});
 \text{THETA2} = \text{conversion(} \theta_2, 110, -90);
 \text{THETA22} = \text{conversion(} \theta_22, 110, -90);
\text{end}

if (\theta_{33} == \text{NOSOLUTION})
 THETA_{2i} = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_{2i};
 THETA_{22i} = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_{22i};
else
 \theta_{2i} = \text{THE2} (x_{\text{tip}}, y_{\text{tip}}, z_{\text{tip}}, \theta_1, \text{zeta1});
 \theta_{22i} = \text{THE2COMP} (x_{\text{tip}}, y_{\text{tip}}, z_{\text{tip}}, \theta_1, \text{zeta1});
 \text{THETA2i} = \text{conversion(} \theta_{2i}, 110, -90);
 \text{THETA22i} = \text{conversion(} \theta_{22i}, 110, -90);
\text{end}

if (\theta_{3i} == \text{NOSOLUTION})
 THETA_{2j} = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_{2j};
 THETA_{22j} = \text{GOAL OUT OF WORKSPACE, THERE IS NO VALID VALUE FOR } \theta_{22j};
else
 \theta_{2j} = \text{THE2} (x_{\text{tip}}, y_{\text{tip}}, z_{\text{tip}}, \theta_{11}, \text{zeta1});
\text{end}
\[\theta_{22j} = \text{THE2COMP}(x_{tip},y_{tip},z_{tip},\theta_{11},zeta_{i}) \]
\[\theta_{2j} = \text{conversion}(\theta_{2j},100,-90) \]
\[\theta_{22j} = \text{conversion}(\theta_{22j},100,-90) \]
end

if (\theta_{33i} == \text{NOSOLUTION})
\[\theta_{2k} = \text{THE2}(x_{tip},y_{tip},z_{tip},\theta_{11},zeta_{1i}) \]
\[\theta_{22k} = \text{THE2COMP}(x_{tip},y_{tip},z_{tip},\theta_{11},zeta_{1i}) \]
\[\theta_{2k} = \text{conversion}(\theta_{2k},110,-90) \]
\[\theta_{22k} = \text{conversion}(\theta_{22k},110,-90) \]
end

\% DISPLAY ALL THE POSSIBLE EIGHT SOLUTIONS, NOTE THAT EVERY TWO SOLUTIONS FORM ONLY ONE SOLUTION SET

disp (' \theta_{1,2,3} SOLUTIONS')
disp (' SET 1')
SOL1 = [\theta_{1}, \theta_{2}, \theta_{3}]
SOL2 = [\theta_{1}, \theta_{22}, \theta_{3}]
disp (' SET 2')
SOL3 = [\theta_{1}, \theta_{2i}, \theta_{33}]
SOL4 = [\theta_{1}, \theta_{22i}, \theta_{33}]
disp (' SET 3')
SOL5 = [\theta_{11}, \theta_{2j}, \theta_{3i}]
SOL6 = [\theta_{11}, \theta_{22j}, \theta_{3i}]
disp (' SET 4')
SOL7 = [\theta_{11}, \theta_{2k}, \theta_{33i}]
SOL8 = [\theta_{11}, \theta_{22k}, \theta_{33i}]

\% SOLVING THE SECOND KINEMATIC SUB-PROBLEM (ORIENTATION)

\[\alpha = \alpha \times \pi/180; \]
\[\beta = \beta \times \pi/180; \]
\[\gamma = \gamma \times \pi/180; \]

\[R_{60} = \begin{bmatrix} \cos(\alpha)\cdot\cos(\beta), & (\cos(\alpha)\cdot\sin(\beta)\cdot\sin(\gamma)-\sin(\alpha)\cdot\cos(\gamma)), & (\cos(\alpha)\cdot\sin(\beta)\cdot\cos(\gamma)) + \sin(\alpha)\cdot\sin(\gamma) \\ \sin(\alpha)\cdot\cos(\beta), & (\sin(\alpha)\cdot\sin(\beta)\cdot\sin(\gamma)) + \cos(\alpha)\cdot\cos(\gamma), & (\sin(\alpha)\cdot\sin(\beta)\cdot\cos(\gamma)) - \cos(\alpha)\cdot\sin(\gamma) \\ -\sin(\beta), & \cos(\beta)\cdot\sin(\gamma), & \cos(\beta)\cdot\sin(\gamma) \end{bmatrix} \]

\[R_{30} = \begin{bmatrix} \cos(\theta_{1})\cdot\cos(\theta_{2}+\theta_{3}), & -\cos(\theta_{1})\cdot\sin(\theta_{2}+\theta_{3}), & \sin(\theta_{1}) \\ \sin(\theta_{1})\cdot\cos(\theta_{2}+\theta_{3}), & -\sin(\theta_{1})\cdot\sin(\theta_{2}+\theta_{3}), & \cos(\theta_{1}) \\ -\sin(\theta_{2}+\theta_{3}), & -\cos(\theta_{2}+\theta_{3}), & 0 \end{bmatrix}; \]
Forward and Inverse Kinematic Analysis and Validation of the ABB IRB 140 Industrial Robot

\[\text{RT30} = \text{transpose}(\text{R30}); \]
\[\text{R63} = \text{RT30} \ast \text{R60}; \]
\[g_{11} = \text{R63}(1,1); \]
\[g_{12} = \text{R63}(1,2); \]
\[g_{23} = \text{R63}(2,3); \]
\[g_{31} = \text{R63}(3,1); \]
\[g_{32} = \text{R63}(3,2); \]
\[g_{33} = \text{R63}(3,3); \]

% THETA 4,5,6 CALCULATION

\[\text{theta5} = \text{atan2}((g_{31})^2 + (g_{32})^2, g_{33}); \]
\[\text{if} (\text{theta5} == 0) \]
\[\text{THETA4} = 0 \]
\[\text{THETA5} = 0 \]
\[\text{theta6} = \text{atan2}(-g_{12}, g_{11}); \]
\[\text{THETA6} = \text{theta6} \ast 180/\pi \]
\[\text{elseif} (\text{theta5} == \pi) \]
\[\text{THETA4} = 0 \]
\[\text{THETA5} = 0 \]
\[\text{theta6} = \text{atan2}(g_{12},-g_{11}); \]
\[\text{THETA6} = \text{theta6} \ast 180/\pi \]
\[\text{else} \]
\[\text{theta4} = \text{atan2}(g_{32}/ \sin(\text{theta5}), -g_{31}/ \sin(\text{theta5})); \]
\[\text{theta6} = \text{atan2}(g_{23}/ \sin(\text{theta5}), g_{31}/ \sin(\text{theta5})); \]
\[\text{THETA4} = \text{conversion}(\text{theta4},200,-200); \]
\[\text{THETA5} = \text{conversion}(\text{theta5},115,-115); \]
\[\text{THETA6} = \text{conversion}(\text{theta6},400,-400); \]

% FLIPPED POSTION

\[\text{theta44} = \text{theta4} + \pi; \]
\[\text{theta55} = -\text{theta5}; \]
\[\text{theta66} = \text{theta6} + \pi; \]
\[\text{THETA44} = \text{conversion}(\text{theta44},200,-200); \]
\[\text{THETA55} = \text{conversion}(\text{theta55},115,-115); \]
\[\text{THETA66} = \text{conversion}(\text{theta66},400,-400); \]
\[\text{disp}(\text{’THETA 4,5,6 SOLUTIONS’}) \]
\[\text{Solution1} = [\text{THETA4},\text{THETA5},\text{THETA6}] \]
\[\text{Solution2} = [\text{THETA44},\text{THETA55},\text{THETA66}] \]
\[\text{end} \]

% FIRST POSSIBLE SOLUTION OF THETA2 FUNCTION

function \[\text{RES} = \text{THE2}(\text{xtip},\text{ytip},\text{ztip},\text{theta1},\text{zeta}) \]
\[s = (\text{ztip} - \text{d1}); \]
\[r = \sqrt{(\text{xtip} - \text{a1} \ast \cos(\text{theta1}))^2 + (\text{ytip} - \text{a1} \ast \sin(\text{theta1}))^2}; \]
\[\text{omega} = \text{atan2}(s, r); \]
\[\text{lenda} = \text{atan2}((\text{d4} + \text{d6}) \ast \sin(\text{zeta}), \text{a2} + (\text{d4} + \text{d6}) \ast \cos(\text{zeta})); \]
\[\text{RES} = -((\text{omega} - \text{lenda}) \ast (\pi/2)); \]
\[\text{End} \]
function RES1 = THE2COMP(xtip, ytip, ztip, theta1, zeta)
 s = (ztip - d1);
 r = - sqrt((xtip - a1*cos (theta1))^2 +(ytip - a1*sin(theta1))^2);
 omega = atan2 (s, r);
 lenda = atan2 ((d4+d6) * sin (zeta) , a2+(d4+d6)* cos (zeta));
 RES1 = - ((omega - lenda) - (pi/2));
end

% JOINT ANGLES LIMIT FUNCTION
function OUT = conversion(theta, upperlimit, lowerlimit)
 upperlimit = upperlimit * pi / 180;
 lowerlimit = lowerlimit * pi / 180;
 if (theta > upperlimit)
 OUT = (' THE SOLUTION OUT OF JOINT ANGLE LIMIT ');
 elseif (theta < lowerlimit)
 OUT = (' THE SOLUTION OUT OF JOINT ANGLE LIMIT ');
 else
 OUT = theta * 180 / pi;
 end
end